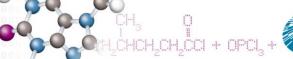


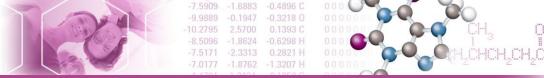
ChemProspector: Advanced Mining and Searching of Chemical Content in Patent Documents


Josef Eiblmaier (InfoChem), Hans Kraut (InfoChem), Larisa Insenko (InfoChem), Heinz Saller (InfoChem), Peter Loew (InfoChem)

ICIC 24 - 27 October, Vienna

Supported by:

Outline


- » Introduction
 - > ChemProspector, a THESEUS project
 - > Markush in a nutshell
- » Major Goals and Approach
- » First Results
- » Outlook

© cora / PIXELIO, www.pixelio.de

Supported by:

- » "New Technologies for the Internet of Services"
- » Research program initiated by the Federal Ministry of Economy and Technology (BMWi)
- » Supported with approx. 100 million Euros
- » Facilitate access to information, combine data to form new kinds of knowledge and lay the groundwork for new services on the Internet
- » Duration: five years (2007 2011)
- » Divided into six application scenarios combined through core technology cluster
- » Phase one: development of core technologies (2007 2008)
- » Phase two: THESEUS SME (2009 2011)

Supported by:

ChemProspector: Basic data

» Main emphasis:

'The automatic extraction of Markush Structures from patent documents'

- » Research SME-project within the THESEUS research program
- » Application scenario ORDO ("Ordnung Digitaler Information")
- » Duration: July 2009 end of 2011

What is a 'Markush Structure'?

Quelle: http://www.colorantshistory.org

- Patented Aug. 26, 1924.

 1. The process for the manufacture of dyes which comprises coupling with a halogen-substituted pyrazolone, a diazotized unasulphonated material selected from the group consisting of aniline, homologues of aniline and halogen substitution products of aniline.

 To all a citic a citic a citic a citic aniline and halogen substitution products of aniline.

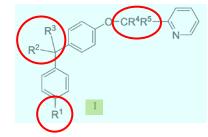
 The process for the manufacture of aniline and halogen substitution products of aniline.

 The process for the manufacture of aniline and halogen substitution products of aniline.

 The process for the manufacture of aniline aniline and halogen substitution products of aniline.

 The process for the manufacture of aniline aniline and halogen substitution products of aniline.
- » Dr. Eugene A. Markush (1888-1968), Pharma Chemical Corporation (1917)
- » USP No. 1,506,316 (1924), first usage of generic structures in a patent

Supported by:



DETAILED DESCRIPTION OF THE INVENTION

The instant invention provides a compound represented by structural formula I

10

15

20

the pyridyl-N-oxide analog of formula I, and the pharmaceutically acceptable salts, esters and solvates thereof wherein:

is selected from the group consisting of:

of fluoro, (b) -C3-6 cycloalkyl and

R² is selected from the group consisting of (a) -C₁₋₆alkyl optionally substituted with 1-3

n is an integer selected from 0, 1, 2 and 3;

R³ is selected from the group consisting of -H, -F, -OH, -CH₃ and -CF₃;

R4 is selected from the group consisting of -H and -C₁₋₄alkyl;

R⁵ is selected from the group consisting of –H and -CH₃; and

R6 is selected from the group consisting of -H, -C₁₋₆alkyl optionally substituted with 1-

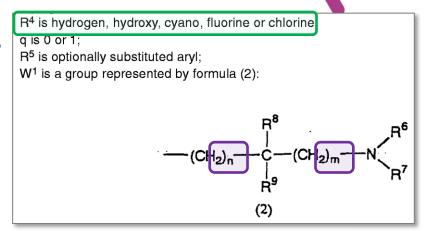
3 fluoro, -C₃₋₆ cycloalkyl optionally substituted with 1-3 fluoro and -CH₂-R¹⁰;

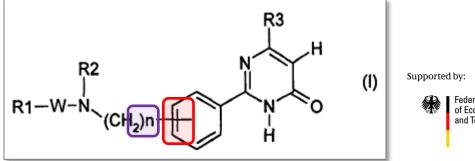
R7 is selected from the group consisting of –H, -C₁₋₆alkyl optionally substituted with 1-

3 fluoro, -C3_6 cycloalkyl optionally substituted with 1-3 fluoro, -COC1_6alkyl and -COC3_6 cycloalkyl;

Prospector

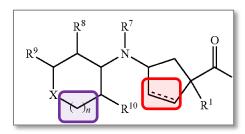
Supported by:




Markush: The challenge

- » The Information is contained in the text ...
 - » Substituents variation
 - » Homology variation
 - » Topology variation
- » ... in the images ...
 - » Position variation
 - » Frequency variation

wherein R¹¹ represents a hydrogen atom or a methyl group and R¹² represents a single bond or a linear or branched alkylene group having 1 to 5 carbon atoms.



» ... and both, text and images!

- » Frequency variation
- » Bond variation

alkyl are unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, — CO_2R^{20} , C_{1-3} alkyl, and C_{1-3} alkoxy;

n is selected from 0, 1 and 2; the dashed line represents a single or a double bond;

wherein n is an integer of 0 to 30. I

Supported by:

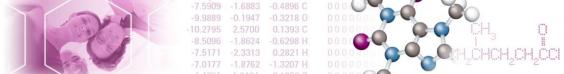
ChemProspector: General assumptions

- » Markush notations follow particular grammar rules
- » Definition of four complexity levels for Markush-structures
 - > Level 0: fully defined structures
 - > Level 1: simple standard notations
 - > Level 2: complex standard notations
 - > Level 3: complex notations, singletons
- » Reference set: 70 patent documents (Training)
- » Test set: 70 patent documents (Evaluation)

```
The present invention is directed to compounds of the 15
                                                                                 R2 is selected from:
                                                                                       (a) hydrogen,
                                                                                        (c) halo.
                                                                                        (d) C. , alkyl, where the alkyl is unsubstituted or substi-
                                                                                        tuted with 1-6 substituents independently selected from:
                                                                                        (e) -NR<sup>20</sup>R<sup>2</sup>
                                                                                        (f) -CO<sub>2</sub>R<sup>2</sup>
                                                                                             -NR<sup>20</sup>COR<sup>2</sup>
                                                                                             -OCONR<sup>20</sup>R<sup>2</sup>
                                                                                             -NR<sup>20</sup>CONR<sup>20</sup>R<sup>26</sup>
                                                                                        (k) -heterocycle,

 CN.

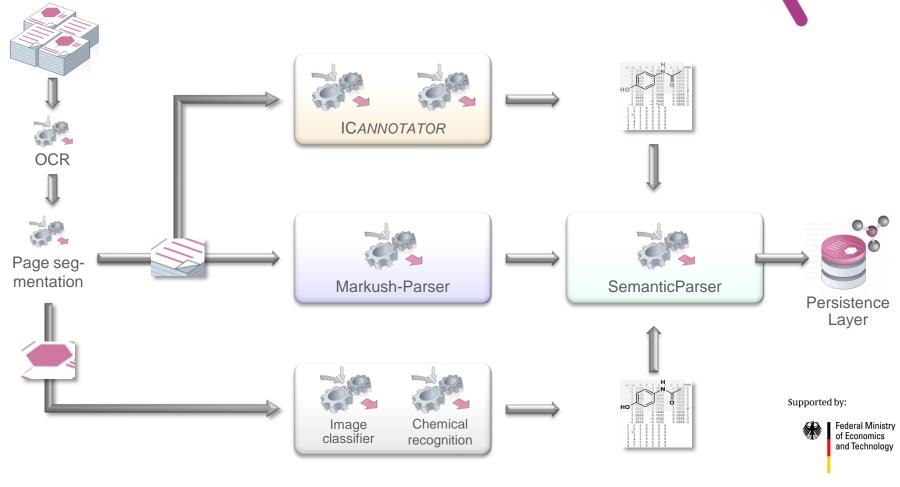
X is selected from the group consisting of:
                                                                                       (m) -NR<sup>20</sup>-SO<sub>2</sub>-NR<sup>20</sup>R<sup>26</sup>,
                             _S_, _SO__, -
-NSO<sub>2</sub> R<sup>20</sup> .
                               -SU_2 = R^{a0} - SU_2 = And


-CR^{21}CO_2 = R^{20} = -SU_2 = And

-CR^{21}CO_2 = R^{20} = -SU_2 = And
                                                                                       (n) —NR<sup>20</sup>—SO<sub>2</sub>—R<sup>26</sup>,
(O) —SO<sub>2</sub>—NR<sup>20</sup>R<sup>26</sup>, and
    -O--, -NR<sup>20</sup>
-CR<sup>21</sup>R<sup>22</sup> -
                                                                                       (p) =O, where R2 is connected to the ring via a double
                         CO—, where R<sup>20</sup> is selected from:
     hydrogen, C<sub>1.6</sub> alkyl, benzyl, phenyl, C<sub>3.6</sub> cycloalkyl <sup>35</sup>
where the alkyl, phenyl, benzyl, and cycloalkyl groups
                                                                                 R3 is oxygen or is absent;
                                                                                 R4 is selected from:
      can be unsubstituted or substituted with 1-3 substituents
                                                                                       (a) hydrogen
     where the substituents are independently selected from:
halo, hydroxy, C<sub>1-3</sub>alkyl, C<sub>1-3</sub>alkoxy, —CO<sub>2</sub>H,
                                                                                       (b) C. alkyl.
                                                                                        (c) trifluoromethyl,
        —CO<sub>2</sub>—C<sub>1-6</sub>alkyl, and trifluoromethyl,
                                                                                        (d) trifluoromethoxy
  where R<sup>21</sup> and R<sup>22</sup> are independently selected from: hydro-
gen, hydroxy, C<sub>1-6</sub> alkyl, —O—C<sub>1-6</sub> alkyl, benzyl, phe-
                                                                                        (e) chloro,
                                                                                       (f) fluoro.
       nyl, C<sub>3.6</sub> cycloalkyl where the alkyl, phenyl, benzyl, and
                                                                                       (g) bromo, and
      cycloalkyl groups can be unsubstituted or substituted
                                                                                        (h) phenyl:
      with 1-3 substituents where the substituents are indepen-
                                                                                       s selected from:
      dently selected from: halo, hydroxy, C1-3 alkyl, C1-3
                                                                                       (a) C1-6alkyl, where alkyl may be unsubstituted or sub-
      alkoxy, -CO2 H, -CO2 -C1-6 alkyl, and trifluorom-
                                                                                        stituted with 1-6 fluoro and optionally substituted with
                                                                                        hydroxyl,
R1 is selected from:
    (b) —O—C<sub>1-6</sub>alkyl, where alkyl may be unsubstituted
                                                                                        or substituted with 1-6 fluoro,
                                                                                       (c)—CO—C<sub>1-6</sub>alkyl, where alkyl may be unsubstituted
                                                                                        or substituted with 1-6 fluoro,
                                                                                        (d)—S—C<sub>1-6</sub>alkyl, where alkyl may be unsubstituted or
       -CR<sup>21</sup>OCOR<sup>20</sup>—, phenyl and pyridyl,
                                                                                        substituted with 1-6 fluoro,
                                                                                       (e)-pyridyl, which may be unsubstituted or substituted
   where R26 is selected from: hydrogen, C1-6 alkyl, benzyl, 55
                                                                                        with one or more substituents selected from the group
     phenyl, C3-6 cycloalkyl where the alkyl, phenyl, benzyl,
                                                                                       consisting of: halo, trifluoromethyl, C1-4alkyl, and
     and cycloalkyl groups can be unsubstituted or substi-
tuted with 1-3 substituents where the substituents are
                                                                                       (f) fluoro,
       independently selected from: halo, hydroxy, C<sub>1-3</sub>alkyl,
                                                                                       (g) chloro
      C1-3alkoxy, -CO2H, -CO2-C1-6 alkyl, and trifluo- 60
     romethyl
                                                                                        (h) bromo
   where the alkyl and the cycloalkyl are unsubstituted or
                                                                                       (i) -C4-6cycloalkyl,
     substituted with 1-7substituents where the substituents
                                                                                       (j) -O-C4-cycloalkyl,
     are independently selected from:
                                                                                        (k) phenyl, which may be unsubstituted or substituted
     (a) halo.
                                                                                       with one or more substituents selected from the group
     (b) hydroxy
                                                                                       consisting of: halo, trifluoromethyl, C, alkyl, and
```

(c) -O-C1-3alkyl.

Federal Ministry of Economics and Technology



ChemProspector: Approach

ICANNOTATOR

» Extracts chemical named entities

The aromatic hydrocarbon residue may preferably be an aryl group having a carbon number of 6 to 15. Examples thereof include phenyl, cresyl, xylyl, 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, butylphenyl, nonylphenyl and the like.

Exact chemical entities	methyl, ethyl, n-propyl, phenyl, chloro, nitro, amino, hydroxy, hydrogen, carbon, 1-naphthyl, 2-pyridyl, tosyl, piperidyl		
Generic and homology groups, fragments	alkyl, alkoxy, aryl, halogenid, hydrocarbon	upported by:	
Combinations	alkylamino, 4-aryl-phenyl,	Feder of Eco	

on the basis of a decision by the German Bundestag

, ---- g

Federal Ministry of Economics and Technology

Markush-Parser

» Extracts Markush specific entities

Formula definitions	formula 1, general formula (I), derivatives represented by (3),		
Variable definitions	$R, R^1, R^2, R', A, X, Y, Z, Ar,$		
Wherein definitions	where, wherein, in which,		
Link group	represents, may be, one of, is selected from,		
Chain lengths	3-20 carbon atoms,		
Topologic definitions	branched or unbranched,		
Bond types	may contain double bonds,	upported by:	
References	as defined above,	Federal Ministry of Economics and Technology	
Substitutions	optionally substituted by,	n the basis of a decision by the German Bundestag	

-9.9889 -0.1947 -0.3218 0 10.2795 2.5700 0.1393 C -8.5096 -1.8624 -0.6298 H -7.5171 -2.3313 0.2821 H

13 / 24

SemanticParser

» Finds patterns of entities/ reassembles the components

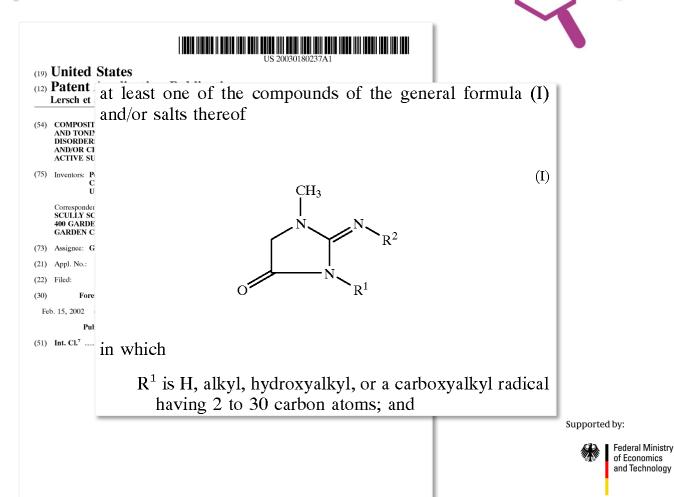
Grammar **FORMULA** LIGAND LIST **DEFINITION** rule 1 Grammar **FORMULA CHEMICAL** WHERIN rule 2 LIGAND LIST **DEFINITION STRUCTURE DEFINITION** Grammar **CHEMICAL CHEMICAL CHEMICAL** WHERIN **FORMULA** LIGAND LIST **STRUCTURE STRUCTURE STRUCTURE DEFINITION DEFINITION** rule 3

Grammar rule n

on the basis of a decision

by the German Bundestag

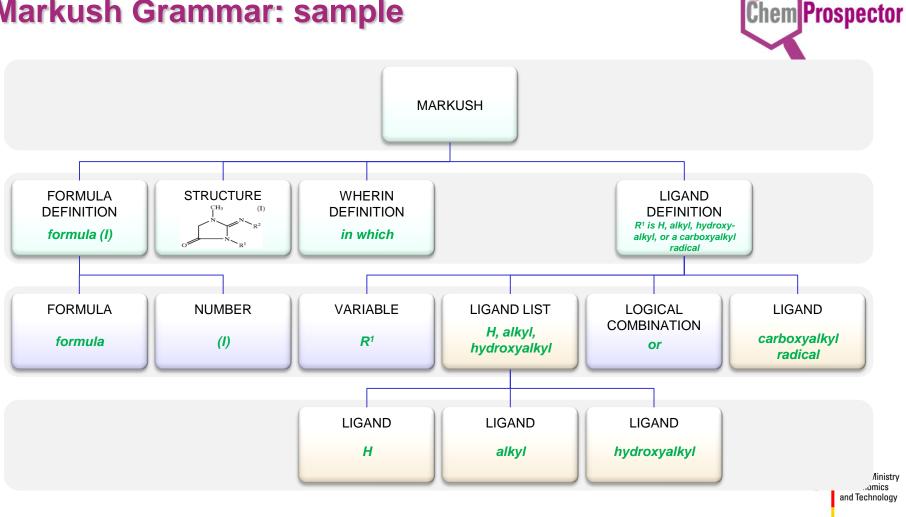
Cunnarted her

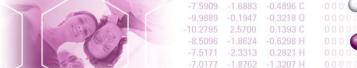


Prospector

14/24

One simple sample





Markush Grammar: sample

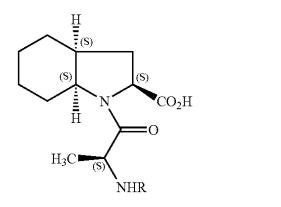
First Results

» Sample test set of four USPTO-Patents

Patent	Markush Structures	Markush Structures extracted	Comment
US20070123581	8	6	One structure level 2 One structure has no ligands
US20030180237	4	4	
US20040171886	16	12	Four structures level 2
US20040030160	7	4	Three structures level 2
Sum	35	26	

Supported by:

(I)



17/24

First Results (Samples)

Chem Prospector

Process for the synthesis of compounds of formula (I):

wherein R represents a hydrogen atom or a protecting group for the amino function. Application in the synthesis of

R = hydrogen OR PROTECTING_GROUP

Supported by:

First Results (Samples)

formula (1) shown below is reacted with an acid, the obtained aminoalcohol salt is reacted with 3,4-dihydro-2H-pyran, and the obtained tetrahydropyranyloxyamine salt is subsequently reacted with an alkali to form a tetrahydropyranyloxyamine represented by the general formula (2) shown below.

$$H_2N$$
— X — OH (1)

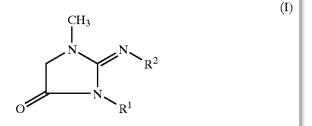
$$H_2N-X-O$$
 (2)

(wherein in said formula (1) and said formula (2), X represents a methylene group, an ethylene group or a straight chain polymethylene group having 3 to 20 carbon atoms)



FORMULA formula (1) FORMULA formula (2)
X = methylene OR ethylene OR
polymethylene BRANCHED = 0
CARBON_ATOM_COUNT 3 - 20

Supported by:



First Results (Samples)

at least one of the compounds of the general formula (I) and/or salts thereof

in which

R¹ is H, alkyl, hydroxyalkyl, or a carboxyalkyl radical having 2 to 30 carbon atoms; and

R² is H or a hydrocarbon radical having 1 to 30 carbon atoms which may be branched or unbranched and may or may not contain double bonds.

FORMULA formula (I) SALTOF

R1 = hydrogen OR alkyl OR hydroxyalkyl
OR carboxyalkyl
CARBON_ATOM_COUNT 2 – 30

R2 = hydrogen OR hydrocarbon CARBON_ATOM_COUNT 1 - 30 BRANCHED >= 0 DOUBLEBOND >= 0

Supported by:



 -9.9889
 -0.1947
 -0.3218 0

 0.2795
 2.5700
 0.1393 C

 -8.5096
 -1.8624
 -0.6298 H

 -7.5171
 -2.3313
 0.2821 H

(7)

20 / 24

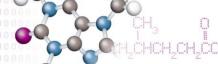
First Results (Samples)

aldehyde or ketone represented by the following formula (7):

[0022] (wherein R^1 and R^2 represent the same meanings as defined above).

(wherein n represents 1 or 2, R^1 and R^2 each represent H, C_{1-8} alkyl groups and the like and R^3 represents C_{1-3} alkyl groups).

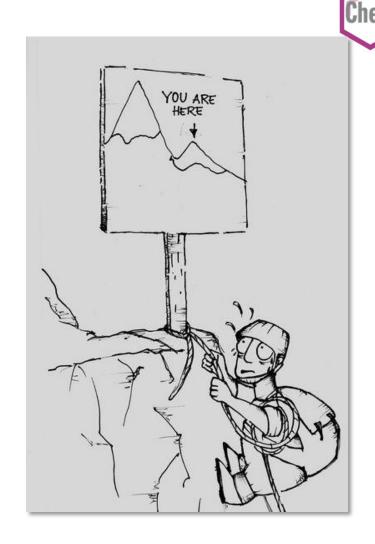
FORMULA formula (7)



R1 = H OR alkyl CARBON ATOM COUNT 1 - 8

R2 = H OR alkyl CARBON_ATOM_COUNT 1 - 8

Supported by:



Prospector

21 / 24

Next steps/Outlook

- » Markush storage and retrieval (Extension of ICCARTRIDGE)
- » Extension of grammar rules to level 2 Markush Structures
- » Page segmentation, image recognition

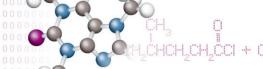
Supported by:

Federal Ministry of Economics and Technology

Prospector

22 / 24

Acknowledgements


» The InfoChem ChemProspector team

» The German Federal Ministry of Economy and Technology (BMWi)

© P. Storz / PIXELIO, www.pixelio.de

Thank you!

Supported by:

© ediathome / PIXELIO, www.pixelio.de

Questions?

Supported by:

