

# Challenges in Next Generation Scientific and Patent Information Mining

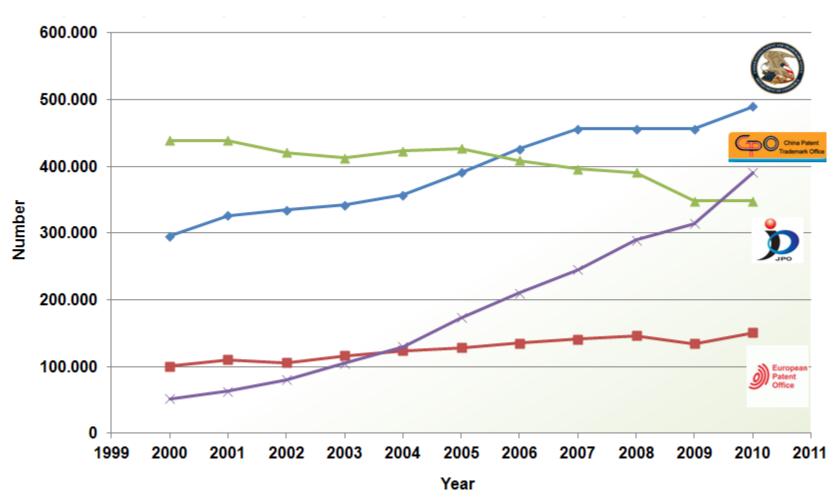
Josef Eiblmaier (InfoChem), Hans Kraut (InfoChem), Larisa Isenko (InfoChem), Heinz Saller (InfoChem), Peter Loew (InfoChem)

ICIC 2011 Barcelona, October 23 – 26

1 / 30






### **Outline**

- » Patents, a buried treasure?
- » Chemical NER
- » CDX work-up
- » Image recognition
- Combining the techniques:ChemProspector





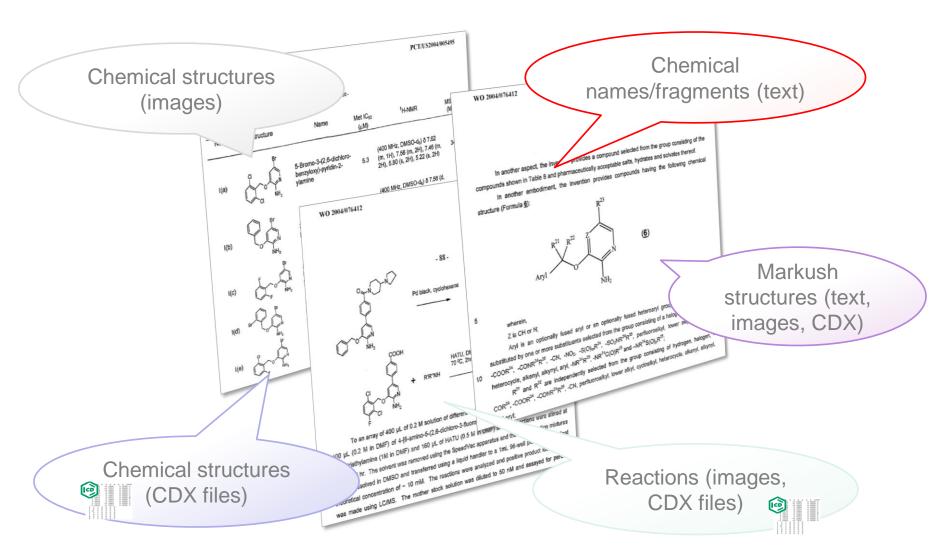
### No. Applications Filed (Selected Patent Offices)



Source: EPO (http://www.epo.org/searching/asian/trends\_de.html), USPTO (http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us\_stat.htm)






#### Patents, a Buried Treasure?

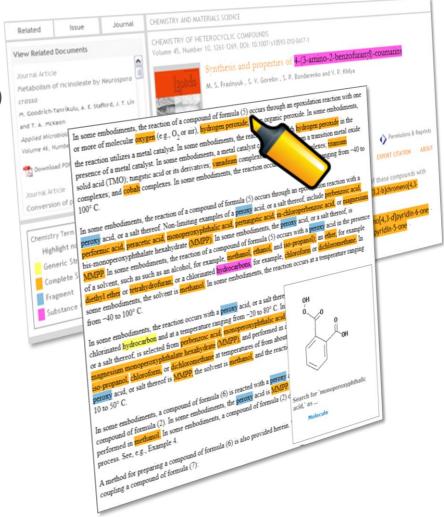
- Scientific knowledge contained in patents comprises about 70 – 80 percent of all scientific knowledge
- » In most cases, a patent is the first publication in the research process
- » Important for competitor monitoring, technology assessment, R&D portfolio management
- » Access to external technological knowledge





#### **Chemical Pharmaceutical Patents: a Buried Treasure?**








Chemical Named Entity Extraction: the Compulsory Exercise?

#### » Named entity extraction (ICANNOTATOR)

- Dictionary based
- Morphology based
- Context based
- » Name to structure conversion
- » Tagging of source documents
  - Highlighting
  - Enrichment with additional attributes
  - Linking (deep linking, cross document)







#### **Challenges NER: OCR'ed Documents**

#### Scanned source document:

The structure of the only representatives of unsymmetrical 3,4'- and 4,5-disubstituted 2,2'-bithiophenes 3,4'-dibromo-2,2'-bithiophene (17) [29] and 4-(2-thienyl)-5-phenyl-2,2'-bithiophene (18) [30] was determined. In the molecule of the first compound slight deviation from planarity is observed, and as a result the torsion angle  $S_{(1)}$ - $C_{(2)}$ - $S_{(1')}$  is 175.0°. The bond lengths and the angles of the heterocycle are comparable with the values determined for the other bithiophenes. The heterocycles in the 2,2'-bithiophene fragment of compound 18 are

#### OCR results:

Tile structure of the only representatives of unsymmetrical 3,4'- and 4,5-disubstituted 2,2'-bithiophenes 3,4'-dibromo-2.2'-bithiophene (17) [29] and 4-(2-thienyl)-5-phenyl-2,2'-bithiophene (18) [30] was determined. In the molecule of the first compound slight deviation from planarity is observed, and as a result the torsion angle S,~,-C~:~-Cn.~-S~n is 175.(I~ The bond lengths and the angles of the heterocycle are comparable with the values determined lbr the other bithiophenes. The heterocycles in the 2,2'-bithiophene fragment of compound 18 are



# **Challenges NER: 'Digital Born' PDF's**

#### PDF document:

[7α,8α,3',4']-N'-(Phenyl)succinimido-6,14-*endo*-etheno-6,7,8,14-tetrahydrothebaine (VI) was synthesized using the method described in [16];

#### PdfToText results:

[7a,8a,3¢,4¢]-N¢-(Phenyl)succinimido-6,14-endo-etheno....





#### ODY Warland Nathing i

## CDX Workup: Nothing is as it Seems!

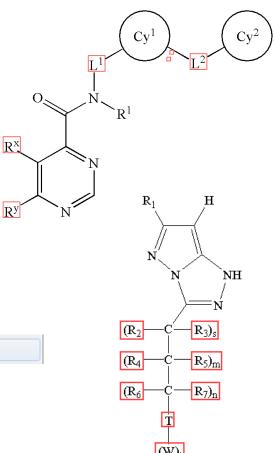
- » For various sources CS ChemDraw files are available on large scale
  - MRW's (e.g. Science of Synthesis)
  - Journals (e.g. Thieme, Wiley, Springer)
  - Patents (e.g. USPTO: 2000 present)
- » The contained structures/reactions can be worked-up automatically (ICSchemeProcessor)
- » But be careful: nothing is as it seems!





# CDX Work-up: Nothing is as it Seems!

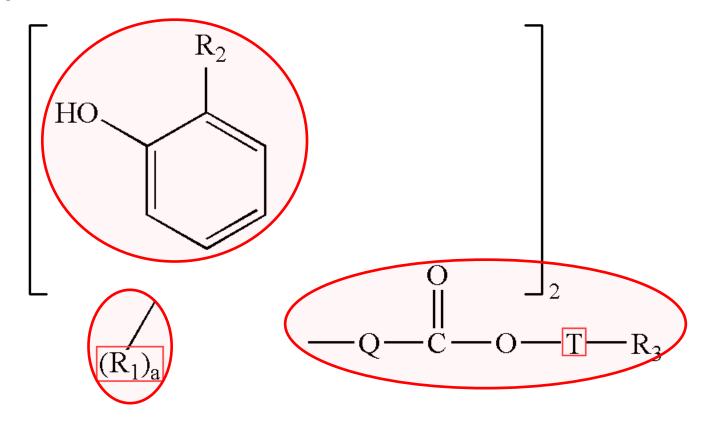
#### » Reaction arrows / forked arrows / brackets




## CDX Work-up: Nothing is as it Seems!

#### » Unresolvable labels

- Labels not defined
- Element symbols used as R-group labels
- Ambiguous fragment labels (e.g. molecular formula)


$$\begin{array}{c|c} P_1 & & \\ \hline P_2 & P & \\ \hline P & M_1 & M_2 \\ \hline P & P & \\ \hline \end{array}$$





# CDX Work-up: Nothing is as it seems!

#### » Variable points of attachment



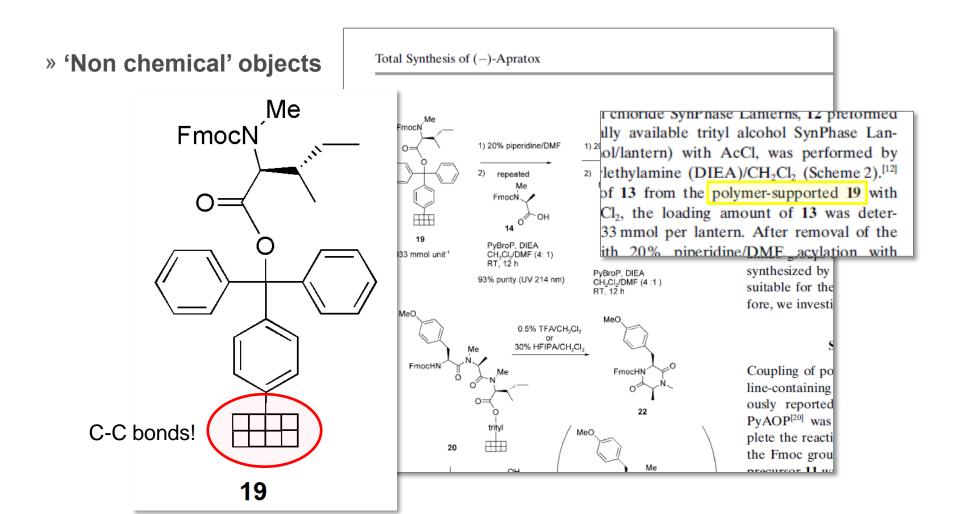


#### CDX Work-up: Nothing is as it Seems!

#### » R-group enumeration

- in the CDX file
- unstructured in the text
- structured in the text as table (XML)

#### 5.1.16.6.1 Method 1: Synthesis from Germyl Enol Ethers by Hydrolysis


The reaction of  $\alpha$ , $\beta$ -unsaturated 0,0-acetals 1 with the butyllithium/potassium tert-butoxide superbase (LICKOR) gives 1-alkoxy-1-metallobuta-1,3-diene intermediates 2 via 1,4-elimination. The sequential trapping of these organometallic species with trialkyl-(halo)germanes 3 affords 1-alkoxy-1-germylbuta-1,3-dienes 4 in moderate to excellent yields. Hydrolysis in the presence of Amberlyst-15 resin then furnishes  $\alpha$ , $\beta$ -unsaturated acylgermanes 5 (Scheme 1).[3]

Scheme 1 Acylgermanes by Hydrolysis of Germyl Enol Ethers[3]

```
<sdoc name="07EBF-DOC-6" key="$0105100700300000006">
   <pmme>5.1.16.6.5 Method 5: Application of Acylgermanes as Amide Precursors</pmme>
   <sosc name="07EBF-SCH-6.1" key="$010510070030000000601">
<posc>Scheme 5 Synthesis of Amides from Acylgermanes[6]
ield<sup>a</sup> (%) of 5
<tabl>
<thdr>
                                                                                                                                                                                                                                                                                                                                                                                                                                        [3]
<trow><tcel>R<ctfs>1</ctfs></tcel><tcel>R<ctfs>2</ctfs></tcel><tcel>R<ctfs>3</ctfs></tcel><tcel>Yield
(%)</tcel><tcel>Ref</tcel></trow>
                                                                                                                                                                                                                                                                                                                                                                                                                                       [3]
</thdr>
                                                                                                                                                                                                                                                                                                                                                                                                                                       [3]
<trow><tcel><ctfi>t</ctfi>-Bu</tcel><tcel>Bn</tcel><tcel>Cel>Tcel>Cel>Color (Color Bush Color Bush 
[3]
</tabl></sosc>
                                                                                                                                                                                                                                                                                                                                                                                                                                       [3]
</sdoc>
</sman>
                                                                                                                                                                                                                                                                                                                                                                                                                                       [3]
                                                                                                                                                                                                                                                                                                                                                                                                                                       [3]
                                                                                                                                                                                                                                                               CH<sub>2</sub>CMe<sub>2</sub>CH<sub>2</sub>
                                                                                                                                                                                                                                                                                                 CH<sub>2</sub>CMe<sub>2</sub>CH<sub>2</sub>OH
                                                                                                                                                                                                                                                                                                                                                             90
```



### CDX Work-up: Nothing is as it Seems!







## CDX Work-up: Solution/Approach ICSchemeProcessor

#### » Algorithmic detection of features

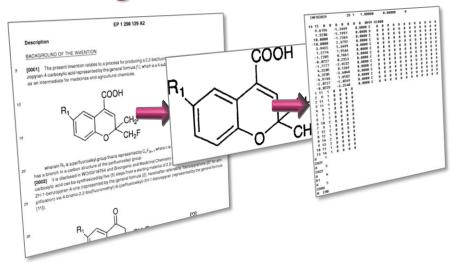
- Repeating groups
- Aliases, R-groups within CDX files



#### » Guidelines for authors and typesetters

- Syntax definitions for tables, R-groups etc.
- Syntax rules for captions
- Reaction arrangement, forked arrows
- Location and colour rules for reaction conditions (reactants, catalysts, solvents)



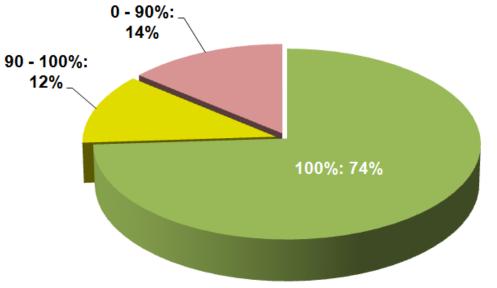



## Image Recognition: the Supreme Challenge

- » In many cases only raster images are available
- » Multiple step process:

16/30

- page segmentation
- image classification
- vectorization, OCR, reconstruction




- » Part of ChemProspector: ICImg2Struct
  - InfoChem proprietary development, started mid 2010

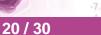


## Image Recognition ICImg2Struct: Status and Evaluation

- » Used benchmark set: OSRA validation set (USPTO)
  - 5,735 chemical structures (images <u>and</u> associated MOL files) (http://cactus.nci.nih.gov/osra/uspto-validation.zip)
- » Degree of match: InfoChem SimilarityMCD
  - 100% correct: 4,234 structures (74%)
  - 90 100%: 722 structures (12%)
  - 0 90%: 779 structures (14%)






| Original Image                                          | ICImg2Struct                                            | SimilarityMCD |
|---------------------------------------------------------|---------------------------------------------------------|---------------|
| HIN N<br>N<br>N<br>N<br>N                               | HN N O N N N N N N N N N N N N N N N N N                | 100%          |
| HN N<br>HN N<br>HN N                                    | HN N O NH                                               | 100%          |
| CH <sub>3</sub> Chiral                                  | O ON N S                                                |               |
| H <sub>3</sub> C OH N O O O O O O O O O O O O O O O O O | H <sub>3</sub> C OH O O O O O O O O O O O O O O O O O O | 96.3%         |



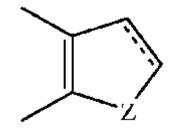
### Image Recognition: Variable Points of Attachment

ICImg2Struct

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 






## **Image Recognition: More Challenges**

- » Wavy bonds
- » Atom numbers
- » Brackets
- » Chlorine, Iodine
- » Circles
- » Fused characters
- » Charges
- » Crossing bonds
- » Variable bonds
- » ...

$$Z$$
 $R_1$ 
 $R_2$ 
 $CH_2)n$ 
 $R_3$ 
 $C$ 
 $R_{13}$ 

CI + OPCL, + HCI

$$R^2$$
 $R^2$ 
 $R^2$ 
 $R^2$ 



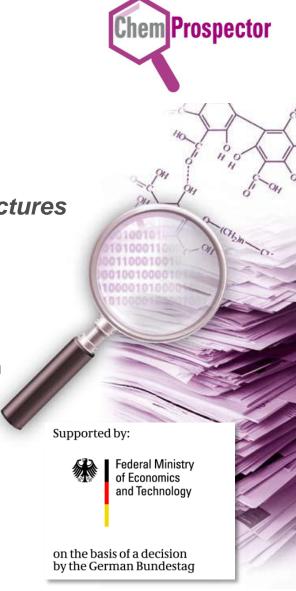




## Image Recognition: Even More Challenges

ČCI + OPCI, + HCI






## **Combining the Techniques: ChemProspector**

» Main emphasis:

'The automatic extraction of Markush Structures from patent documents'

- » Research SME-project within the THESEUS research program
- » THESEUS: 'New Technologies for the Internet of Services'
- » Duration THESEUS: five years (2007 2011)
- » Duration ChemProspector: July 2009 end of 2011







# **Main Challenges**

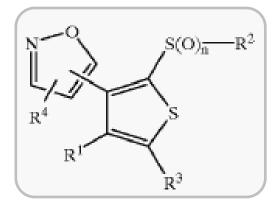
(12)

(54)

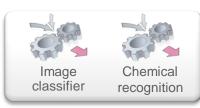
(75)

(73)

(21) (22) (86)


(87)

(30)


(52) (58)

(56)

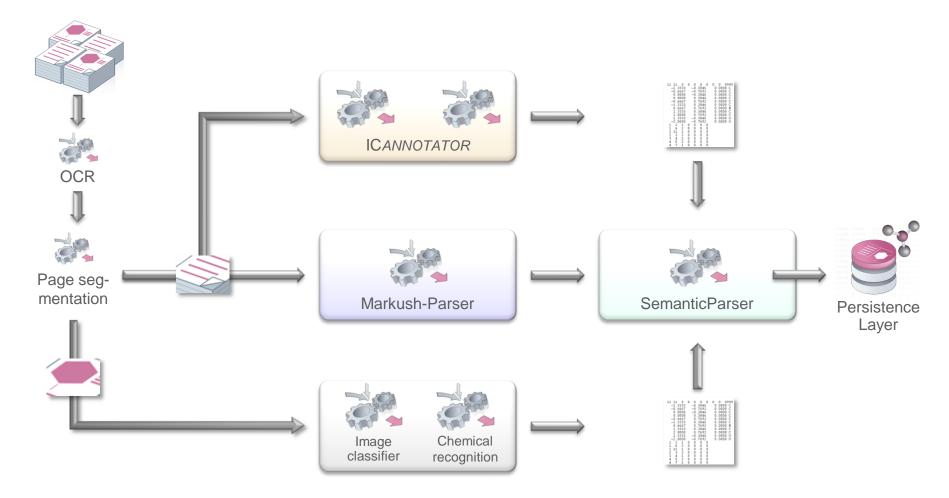
Sep. (51) More specifically, the present invention is directed to a substituted isoxazolylthiophene compound represented by the formula (I)



wherein R<sup>1</sup> and R<sup>2</sup> individually represent an alkyl group of 1–5 carbon atoms. R<sup>3</sup> represents a cyano group or a group CONR<sup>5</sup>R<sup>6</sup> (in which R<sup>5</sup> and R<sup>6</sup> individually represent a hydrogen atom or an alkyl group of 1–10 carbon atoms), R<sup>4</sup> represents an alkyl group of 1–5 carbon atoms or a phenyl group, and n is an integer of 0–2, or a salt thereof.

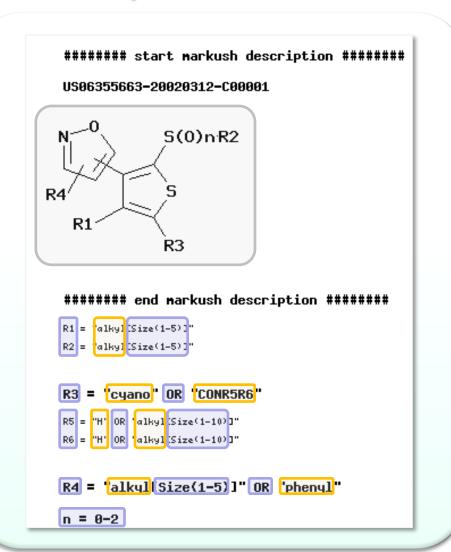


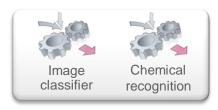










# **ChemProspector: Approach**





## **Results: Example**













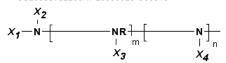
#### Results: US2003162298 A1

1. A compound represented by general formula (IA) or (IB) or a salt thereof:

$$R^{1}$$
 $R^{2}$ 
 $COOR^{7}$ 
 $R^{4}$ 
 $R^{6}O$ 
 $R^{6}O$ 
 $R^{6}O$ 
 $R^{6}O$ 
 $R^{7}O$ 
 $R^{8}O$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{6}O$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{6}O$ 
 $O$ 
 $O$ 

wherein R<sup>1</sup> and R<sup>2</sup> independently represent a hydrogen atom or a group represented by formula (A):

wherein X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup>, and X<sup>4</sup> independently represent a hydrogen atom, an alkyl group, a 2-pyridylmethyl group, or a protective group for an amino group, and m and n independently represent 0 or 1, provided that R1 and R2 do not simultaneously represent hydrogen atoms; R<sup>3</sup> and R<sup>4</sup> independently represent a hydrogen atom or a halogen atom; R<sup>5</sup> and R<sup>6</sup> independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxymethyl group, and R<sup>7</sup> represents a hydrogen atom or an alkyl group.


#### ####### start markush description #######

US20030162298A1-20030828-C00018

#### ####### end markush description #######

R1 = "H" OR "STRUCT IN FORMULA(A)" R2 = "H" OR "STRUCT\_IN\_FORMULA(A)"

US20030162298A1-20030828-C00019



X1 = "H" OR "alkyl" OR "2-pyridylmethyl" OR "Prt(amino)" X2 = "H" OR "alkyl" OR "2-pyridylmethyl" OR "Prt(amino)"

X3 = "H" OR "alkyl" OR "2-pyridylmethyl" OR "Prt(amino)"

X4 = "H" OR "alkyl" OR "2-pyridylmethyl" OR "Prt(amino)"

m = 0-1n = 0-1

IF R1 AND R2 NOT SIMULTANEOUSLY = "H"

R3 = "H" OR "Hal"

R4 = "H" OR "Hal"

R5 = "H" OR "alkylcarbonyl" OR "alkylcarbonyloxymethyl"

R6 = "H" OR "alkylcarbonyl" OR "alkylcarbonyloxymethyl"

R7 = "H" OR "alkyl"



#### Results: US 20050154025 A1

#### 1. A compound of the formula (I):

$$\begin{array}{c}
R^{3} \\
N \\
N \\
NH
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
NH
\end{array}$$

$$\begin{array}{c}
H \\
N
\end{array}$$

$$\begin{array}{c}
R^{4} \\
\end{array}$$

$$\begin{array}{c}
R^{5} \\
\end{array}$$

$$\begin{array}{c}
R^{1} \\
\end{array}$$

$$\begin{array}{c}
R^{1} \\
\end{array}$$

$$\begin{array}{c}
R^{1} \\
\end{array}$$

wherein  $R^1$  is hydrogen, halogen, cyano, lower alkyl, halolower alkyl, hydroxy, lower alkoxy or aralkyloxy;  $R^2$  and  $R^3$  are each independently hydrogen, halogen or halo-lower alkyl; and  $R^4$  and  $R^5$  are each independently hydrogen or halogen, provided that when  $R^1$  is hydrogen, a group of the formula:

$$R^3$$
 $R^2$ 

and a group of the formula:

## ####### start markush description ####### US20050154025A1-20050714-C00031 ####### end markush description ####### R1 = "H" OR "Hal" OR "cyano" OR "alkyl[Size(1-6)]" OR "alkyl" OR "hydroxy" OR "alkoxy[Size(1-6)]" OR "aralkyloxy" R2 = "H" OR "Hal" OR "alkyl" R3 = "H" OR "Hal" OR "alkvl" R2 AND R3 INDEPENDENTLY R4 = "H" OR "Hal" R5 = "H" OR "Hal" R4 AND R5 INDEPENDENTLY IF R1 = "H" OR "Struct\_E" OR "Struct\_F" Struct E US20050154025A1-20050714-C00032 Struct F US20050154025A1-20050714-C00033

CI + OFCL, + HCI





# **Acknowledgements**

» The InfoChem Team



» The German Federal Ministry of Economy and Technology (BMWi)









# Thank you!







# **Questions?**