# Dissemination Patterns of Technical Knowledge in the IR Industry. Scientometric Analysis of Citations in IR-related Patents

Dr. Ricardo Eito-Brun Universidad Carlos III de Madrid

> ICIC2013 VIENNA, October 15, 2013

- This communication presents the objectives and preliminary results of an academic project.
- Project main objective is to: establish an innovation activity model
  with guidelines to implement successful innovation and technology
  transfer practices.
- Project specific objectives are:
  - Identify groups within companies and institutions that are leading innovation in specific areas related to Software development for different industries.
  - Identify best-practices regarding systematic Innovation management.
  - Assess the ROI of their innovation efforts.
  - Link conclusions to IC and innovation assessment Models (InnoSpice).

- Patent analysis is a key component in this strategy:
  - Patents are one of the main outputs of innovation efforts.
  - Patents represent the value of innovation results: something that companies want to protect as a potential source of competitive advantage.
  - Patents embody a significant part of the innovation process:
    - Analysis of opportunities.
    - Comparison with existing innovations.
    - Make explicit the contribution to the actual state of knowledge.
  - Patent-based indicators may be used to assess the results of the innovation processes put in place by the organization (not the only ones, of course).

- Patent analysis also offers interesting data regarding:
  - Consumption of information and
  - Knowledge dissemination patterns.
- Examples:
  - Which academic journals have an impact on innovation?
  - To which extent the research done by academic institutions and universities has visibility in the industry?
  - Which is the impact of basic, academic research on "practical innovation"?
  - Which is the impact of previous research made by other companies, probably competitors?
  - How companies are tracking competitors' activities?
  - Which are the most influential companies/institutions regarding innovation
    - on specific knowledge areas?

- These studies are also valuable to improve our knowledge about the historical evolution of specific disciplines.
- In our example, findings provide a better understanding of the evolution of software technologies for Documentation and Information management:
  - Key players from the industry.
  - Inventors
  - Research ideas and innovations.
  - Life-cycle of specific methods and techniques.
  - Areas where these software-based techniques have been applied

- Project steps:
  - Identify sample knowledge areas or domains.
  - Conduct research to identify "leading companies or research groups".
  - Complete further assessments (interviews, questionnaires) to collect:
    - Best practices and activities for building an Innovation Activity Model.
    - Data about knowledge consumption patterns.
- Patent citation analysis is planned to be used for these steps:
  - Identify "leading organizations" and groups within these organizations.
  - Identify preliminary data about information consumption and tracking of competitors.

- The analysis of patent citations has well-developed theoretical foundations:
  - MIT book, by Adam Jaffe and Manuel Trajtenberg.
- Application of additional bibliometric techniques and metrics can provide interesting views of the data.
- There are problems, anyway:
  - Availability of source data (not all the patents DB include citations in a format easy to process).
  - Restrictions regarding software-based patents.
  - Not all the inventions are, necessarily, patented.
  - Motivation behind citations in patent documents.

### Sample Analysis Innovations on Text Mining

- The initial scope of the job is focused on Text Mining.
- Text Mining focuses on "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." (Hearst, 2003)
- Text Mining includes techniques like:
  - Automatic Classification
  - Clustering
  - Information Extraction
  - Text Summarization and automatic abstract generation.
- These techniques share similar theoretical foundations, so in some cases is not easy to assign a contribution to a specific sub-area.
- Preliminary work is done for the "clustering and classification" subset.

### Sample Analysis Innovations on Text Mining

- A preliminary set of patents has been extracted from the Delphion database for "classification and clustering of textual information" (subset of the text mining area).
- Only from the US Patent Office, but not only from US organizations.
- Initial set of 1204 patents.
- Screening of the retrieved patents have restricted the initial set to a sample of 535 patents
- Selected patents include 11884 citations to other patents and 5804 citations to other documents (including patent applications).

#### Sample Analysis Innovations on Text Mining. Sample dataset



Evolution in number of patents.

Increasing output in the last years

Significant increment in the last 10 years.

#### Sample Analysis Innovations on Text Mining. Sample dataset



Distribution of patents by companies.

A few companies create most of the patents in this knowledge area.

Similar to the classical distribution of academic articles in journals.

### Sample Analysis Which are the most "productive" companies?

| ASSIGNEE                   | Total |
|----------------------------|-------|
| IBM                        | 66    |
| Microsoft Corporation      | 44    |
| Xerox Corporation          | 44    |
| Google Inc.                | 29    |
| Hewlett-Packard Company    | 14    |
| NEC Corporation            | 13    |
| Oracle International Corp. | 11    |
| Ricoh Co., Ltd.            | 11    |
| Yahoo! Inc.                | 10    |
| FTI Technology LLC         | 8     |
| Kabushiki Kaisha Toshiba   | 8     |
| Attenex Corporation        | 7     |
| Fujitsu Limited            | 6     |
| EMC Corporation            | 5     |
| Endeca Technologies        | 5     |
| Lucent Technologies, Inc.  | 5     |
| Siemens Corporation        | 5     |



#### Sample Analysis Evoluation of the most "productive" companies?



### Sample Analysis of citations Which are the most "influential" companies?

| Company                                  | Cited |
|------------------------------------------|-------|
| IBM                                      | 1087  |
| Xerox Corporation                        | 625   |
| Microsoft Corporation                    | 593   |
| Oracle Corporation                       | 239   |
| Hitachi, Ltd.                            | 199   |
| Digital Equipment Corp.                  | 151   |
| AT&T Corp                                | 144   |
| Fujitsu Limited                          | 129   |
| HNC, Inc.                                | 129   |
| NEC Corporation                          | 126   |
| Google Inc.                              | 115   |
| Sun Microsystems, Inc.                   | 99    |
| Hewlett Packard Company                  | 92    |
| Ricoh Company, Ltd.                      | 89    |
| Canon Inc.                               | 86    |
| Matsushita Electric Industrial Co., Ltd. | 84    |
| Apple Computer Inc.                      | 83    |
| Lucent Technologies Inc.                 | 78    |
| Amazon.Com                               | 77    |
| Fuji Xerox Co., Ltd.                     | 72    |
|                                          |       |



Impact based on citations received by their patents.

Identify companies with higher impact but lower production.

## Sample Analysis of citations Which are the most "influential" companies, excluding self-citation?

|                                             | Citen   |
|---------------------------------------------|---------|
| Assignee                                    | Patents |
| IBM                                         | 981     |
| Xerox Corporation                           | 505     |
| Microsoft                                   | 457     |
| Oracle                                      | 205     |
| Hitachi, Ltd.                               | 195     |
| Digital Equipment Corp                      | 151     |
| AT&T Corp                                   | 144     |
| Fujitsu Limited                             | 129     |
| HNC, Inc.                                   | 126     |
| NEC Corporation                             | 111     |
| Sun Microsystems, Inc.                      | 98      |
| Ricoh Company, Ltd.                         | 85      |
| Matsushita Electric<br>Industrial Co., Ltd. | 84      |
| Apple Computer Inc.                         | 83      |
| Hewlett Packard                             | 83      |
| Canon Inc.                                  | 82      |
| Amazon.Com                                  | 77      |
| Lucent Technologies                         | 77      |
| Fuji Xerox Co., Ltd.                        | 71      |
| Kabushiki Kaisha                            |         |
| Toshiba                                     | 63      |



Impact of self-citation on data set does not seem to be relevant. Ranking of companies is not affected by its removal.

#### Sample Analysis Evolution of the most influential companies



Figure includes self-citation, but self-citation does not have an impact on this figure.

With the exception of 2010, number of citation grows in the 2005-2012 period.

#### Sample Analysis Bradford and the "core producers"

- Bradford's law is a classical bibliographical method initially proposed to identify the most important journals in a specific area.
- Bradford analysis is about "dispersion" of relevant literature in a collection of journals.
- It states that there is an "inverse relationship between the number of articles published in a subject area and the number of journals in which the articles appear".
- Bradford analysis identifies the "core" set of journals, based on the number of citations they receive from articles published in the area.
- Its objective was helping librarians decide to which journals the library should subscribe (better investment of budget for acquisitions).

### Sample Analysis Bradford and the "core producers"

- Bradford law is also applied to asses authors, universities, etc.
- By applying Bradford analysis to patent citations, it is possible to identify the "core companies" generating contributions/inventions to a specific area.
- Companies are divided into three or more zones, each zone with the same number of citations.
- For a distribution in 4 zones, with around 2300 citations:
  - Core is made of 5 companies: IBM, Xerox, Microsoft, Oracle, Hitachi.
  - 2<sup>nd</sup> Zone includes 28 companies
  - 3<sup>rd</sup> Zone includes 185 companies
  - 4<sup>th</sup> Zone includes 1195 companies
  - Each zone increments number of assignees following the pattern 1:n:n²:n³...

### Sample Analysis Productivity and impact

- Bibliometric studies need to relate productivity (number of published items) with impact (citations received by the published items)
- One company may have a big number of patents with a small number of citations, or a small number of patents with a big number of citations...
- How can we put together these two variables?
- To deal with that, additional metrics have been provided by the bibliometric community: h-index, impact factor, g-index...
- A preliminary analysis of productivity and impact has been conducted for the sample dataset.

### Sample Analysis Evolution of the most influential companies



- This chart shows both productivity and impact.
- X-axe represents productivity (# patents) of the company in the period (1995-2012).
- Y-axe and the size of the bubbles represent the impact of the company in the period (received citations).
- It is possible to create this chart for different periods to analyze the evolution of companies in time.

#### Sample Analysis Evolution of the most influential companies



2007-2012





Evolution of companies' trends could be represented as vectors in a 2-dimensional space.

The vector shows the evolution of the company regarding production and impact. This could provide a dynamic view of companies' innovation outputs.

### Sample Analysis Impact diagrams



- Another interesting output shows the impact that companies have on another companies.
- Classical "citation graphs".
- Arrow size demonstrate the impact of the relationship.
- To be generated for the companies with greater impact and for specific companies.
- Size of the arrows represent a weighted metric based on citations made, divided by total number of citations

#### Sample Analysis Other bibliometric indicators

- The relationship between productivity and impact has been assessed with the h-index (Hirsch Index)
- "It quantifies the cumulative impact and relevance of the scientific output of an individual".
- Index is h if h of his N papers have at least h citations each and the other (N-h) papers have <= h citations each.</li>
- H-Index takes into account both quantity of papers and the citations these papers have received.
- It gives a single number which measures the broad impact of an individual works, and allows authors to be compared according to their h-index.

- For the sample data set, h-index obtained are the following:
  - 5 IBM, XEROX
  - 4 DEC, Infoseek
  - 3 Microsoft, Fujitsu, Amazon, Canon, HNC, ATT
  - 2 Intel, HP, Apple, Oracle, Hitachi, Yahoo!, Toshiba, Google,
     Accenture, Lexis-Nexis, Lucent, Lycos, MIT, SAP, Syracuse University,
     University of California...
- H-index is also used to calculate the "core" patents of an organization, those that had more impact on later research.
- H-index is dynamic and evolves with time, so it has to be monitored.

- H-index is insensitive to the set of non-cited or lowly cited papers,
   and also to the set of highly cited papers.
- Is this an advantage or a limitation?
- Egghe proposed that insensitivity to lowly cited papers is right, but the index should be sensitive to highly cited papers.
- Egghe indicates that the number of citations received should be taken into considerations as a metric of the overall quality.
- G-Index is the "unique, largest number such that the top g papers together receive  $g^2$  or more citations, consequently g > = h."

- For the sample data, h-index are the following:
  - 6 IBM, XEROX
  - 5 Microsoft, HNC, ATT
  - 4 Fujitsu, Amazon, SAP
  - 3 Oracle, Canon, Hitachi, Yahoo!, Intel, HP, Syracuse Univ.
  - 2 DEC, Google, Lexis-Nexis, Toshiba, Accenture, Apple, MIT
  - 1 Infoseek, Lycos, Lucent
- G-index is also used to calculate the "core" patents of an organization, those that had more impact on later research.

- Immediacy index:
  - Indicates the speed with which published items are incorporated into other references.
  - A high immediacy index indicates that the content is quickly noticed,
     highly valued and topical within the field of study.
- Calculated as:
  - (Number of citations given to items in a year) /
  - (Number of items published in that year)

#### Impact Factor:

- Also developed to identify the most relevant journals in an area of study and facilitate journal selection using objective quantitative methods.
- Sorting journals by impact factor enables de includion of many small but influential journals.
- Annually calculad in JCR.
- Applied to assess impact of authors, groups, academic departments and disciplines.

#### Calculated as:

- (Citations to recent items during the year) /
- (Number of recent items published)
- Recent mean "published in the last 2 or 5 years)

#### Impact Factor:

- Impact factor includes self-citation, although initially is was used with the previous removal of self-citation.
- The time period used for analysis is 2 or 5 years (target window), as different disciplines have different citation patterns, and 2 years may be a short time in most of the cases.
- In the case of patents, a larger target window seems to be a better option, although the two indexes can be used together.

- PEI (Publication Efficiency Index):
  - It assesses whether the impact of publications in a country in a given research field is compatible with its research effort.
  - PEI greater than 1 means that the impact of publication in this country is greater than the research effort made.
  - Analysis based on the ration of citations received per item published by a country compared to this ration for all the countries included in the analysis (per year).
  - The most productive countries are not necessarily those which obtain higher PEI values.
  - PEI = (TNCi / TNCt) / (TNPi / TNPt)
  - TNCi = total number of citations received by country
  - TNCt = total number of citations received by all countries
  - TNPi = total number of items published by country I
  - TNPt = total number of items published by all the countires.

- Eigenfactor metrics:
  - Includes 2 metrics based on citation data to assess the influence of a journal in relation to other journals: Eigenfactor score and Article Influence score.
  - Are based on the idea that connections in scientific literature are made by citations, and remedy the biases associated with impact factor: the failure to take into account the differences in prestige between citing journals, and the difference sin citation patterns across disciplines.
  - Considers citations received by journals in the last 5 years and excludes self-citations.
  - It has been applied to other documents: thesis, books, newspapers...

#### Sample Analysis Impact of journals on data set

- By applying previous techniques, the most influencial journals on patents have been identified (by citations):
- Journals and conferences in the core were the following one:
  - ACM Annual Conf. On R&D in Inf.Retrieval SIGIR
  - ACM Transactions on Information Systems
  - TREC
  - ARPA Workshop on Human Language Technology
  - Communications of the ACM
  - Int.Conf.on Machine Learning
  - ACM SIGCHI Computer-Human Interaction
  - Information Processing & Management
  - National Online Meeting
  - Computer Assisted Inf. Searching on Internet RIAO

#### **Conclusions**

- Patent citation analysis may be used to identify groups focused on innovation, both in companies and in universities
- In the sample data, big figures hide the effort and outputs from universities, but they can be treated as a subset.
- The analysis is valid to identify academic journals and other publications that had an impact on the development of the innovations.
- Perhaps this analysis may give some answers to the classical problem: which is the actual, practical value of academic research? How can we measure that?
- The assessments of academic institutions is today a key topic regarding R&D policies, and it should not focus exclusively on their output in academic journals.

#### **Conclusions. Next Steps**

- Identify a wider set of patents for the Text Mining area, to include patents related to information extraction and automatic text summarization.
- Complete the analysis with additional bibliometric indicators.
- Analyze and assess how the classical bibliometric indicators reflect the evolution of each organization on the "productivity and impact" scenario.
- Repeat the analysis for additional areas and domains.
- Identify additional sources of data in addition to Delphion and the
   US Patents collection to validate the results.

#### Thanks!!

Questions:

Ricardo Eito-Brun

reito@bib.uc3m.es

Note: Definitions for bibliometric indicators are taken from: ANDRÉS, Ana. Measuring Academic Research. Chandos Publishing, 2009