

Open Discovery Workflows Beyond Pipelining

Jonathan Sheldon, CSO

(LifeScience and Healthcare)

InforSense Ltd

Copyright 2000-2005 InforSense Ltd. All rights reserved

InforSense Technology Foundation

Workflow based portal building technology: Automatically deploying workflow composing services to an enterprise portal *BioWorld IT 2005 Best of the Show Award -Knowledge Management & Collaboration*

Workflow technology : Building applications by composing services *IEEE Supercomputing 2002 : Most Innovative Award*

Web Services based informatics infrastructure: Harness multidomain distributed resources *IEEE Supercomputing 1998 : Most Innovative Award*

Copyright 2000-2005 InforSense Ltd. All rights reserved

Copyright 2000-2005 InforSense Ltd. All rights reserved

InforSense Workflow Life Cycle

- Constructing a ubiquitous workflow: by scientists
 - Integrate your information resources/software applications cross-domain
 - Support innovation and capture the best practice of your scientific research
- Warehousing workflows: for scientists
 - Manage discovery processes in your organisation
 - Construct an enterprise process knowledge bank
- Deployment workflow: to scientists
 - Turn your workflows into reusable applications
 - Turn every scientist into a solution builder

Copyright 2000-2005 InforSense Ltd. All rights reserved

There is something new about the use of workflow in scientific informatics...

- Workflow is an "machine executable protocol" for in silico scientific activities
- Thus, a scientific workflow needs to be :
 - Ubiquitous : scientific data are heterogamous and scientific activities are rich in variety
 - Integrative : resources (data, software, instruments) need to be dynamically combined for scientific study
 - Personal : scientists need total freedom in defining and building their creative scientific process
 - Interactive : building a scientific workflow with a " trial and error" approach
 - Open : workflow should be able to integrate components from any vendors
 - Reusable : workflow should be reused by others in various form
 - Manageable : workflow represents process knowledge so it evolves overtime

, SD

Virtual Library ___Descriptor Based Filter

Custom Filter

Clean SDF (2)

Ubiquitous : Manage the complete workflow of a project in one framework

- HPP

РСААрріу

PCAModel (2)

[Cached]

-Txi

Delete

+0

Create Fingerprint Matrix

PCA

KMeans

Diverse Subset Filter

Integrative : Dynamic cross domain integration of databases & applications

Used Modules in KDE

- 60 nodes representing 5 x DBs¹ and Oracle components², 3 x 3rd party applications³, 4 x public DBs⁴ and 1 web service⁵
- Gain: 27 times faster (10 vs. 270 Man Days), reusable and sharable

The Workflow

¹⁾ Gene Expression, Patient, ²⁾ ODM (SVM, AI, BLAST, TEXT), ³⁾ Chemical Editor, Blast Viewer, HeatMap, ⁴⁾ ChemBank, PubMed, NCBI, Beilstein, ⁵⁾ KEGG

Interactive : Building Complex Discovery Process with Visualisation

Infor ense

Personal : Building and deploying personal applications

Copyright 2000-2005 InforSense Ltd. All rights reserved

- Higher level orchestration of workflows
 - conditional execution, loops..
- 'Useful' error reporting
 - exactly what has broken !
- Cached results
 - resilience, debugging
- Asynchronous jobs
 - long running processes

- In database execution
 - speed, security
- Audit trial
 - who, what, when
- Meta data level consistency & error checking
 - construction of workflows with compatible data types
- Support for SOA
 - web services
- Enterprise infrastructure
 - cluster support, server admin tools

Case Study: Library design

Collaboration with GSK Cheminformatics

History of the "Industrial" pharma (1)

• Historically

- Low volume
 - 30-50 cmpds/yr/chemist: 10,000s assay wells/yr
- Low information diversity
 - scientists generally dealt with limited types of data
- Reductionist approach
 - limited information per experiment
 - Interpretation critical for next step
 - scientists required:
 - simple systems to assist in information monitoring
 - decision making resides with the scientist

Slides from their e-science presentation at the EPSRC, April 2005.

- What happened in the last 5 years?
 - "Industrialisation" Application of "principles of industrialisation" to drug discovery
 - high volume
 - 10,000 cmpd/yr/chemist/100+ million wells/yr
 - Biology revolution
 - Human genome
 - "system biology" holistic view and interpretation
 - high content data --- images
 - multiple result types from each experiment bio-markers, pathways
 - Knowledge integration
 - scientific discipline integration
 - Scientists required
 - complex systems, algorithms, statistics......
 - decision making shared between systems and scientists

"Informatics" essential – partnership not service

How has pharma IT tackled the transition?

- problem centric view
 - build applications
 - integrate applications
- Educate scientists in the realms of IT
 - "Now I need to be an IT expert alongside chemistry, biology, genetics, robotics, engineering"
 - interesting time scale generations
- Technology is our saviour!
 - client server, web services, java, C#, Corba, OO programming, extreme programming, grid computing,

Chemistry

screening

data

"library" design

infrastructure

- "islands" or "silos" of process & data
 - complex integration problem
 - "spaghetti" joins our worlds unsustainable cost
- control with "IT"
 - mismatch in cycle time to change
 - engineered out serendipity
 - service role reversed

Integrative Analytics for Life Sciences: Building an Informatics Infrastructure

- Objective:
 - Dynamic cheminformatics infrastructure
- Specification:
 - Access to world-class scientific algorithms and tools
 - Access to disparate data sources, multiple locations
 - An intuitive GUI for medicinal chemists not just IT experts
 - Build and deploy "just-in-time" applications
 - Capture and dissemination of "best practice"
- Solution:
 - InforSense KDE + IOE open SOA, integrating services, data, tools
 - OWPN partner integrations
 - Spotfire collaboration -> integrative visual analytics

Library design @ GSK

KDEs Visual Network orchestrates the selection process across multiple tables and multiple Spotfire visualisations

gsk

- Toolbox: scientific models, chemical handling, chemical properties, data access, statistics, data visualisation,
- Scientists can doodle in chemical space
 - Capture how scientists made decisions
- New algorithms, data sources added in < 1 hour

Case Study: Mapping the evolution of SARS

Collaboration with the Shanghai Center for Bioinformation Technology (SCBIT)

- By 2003, SARS was rapidly developing into a pandemic
- The WHO needed to quickly find a way to:
 - Rapidly establish the relationship between genomic variations and the biology of SARS
 - Characterise genomic variations (deletions, single nucleotide variations) during the epidemic
 - Rapidly aggregate and analyse multiple data sources using many different tools, requiring different analysis techniques, from multiple research groups world-wide, in multiple formats on multiple platforms
 - Publish and inform research and treatment groups world-wide to enable appropriate treatment regimes for each patient

SARS: Protein Annotation

•Annotation using applications from EMBOSS package

•Execution on different physical resources

Annotations merged

SARS: Delivering the knowledge

- Access functions via the web
- Rapidly deploy workflows as web applications
 - <u>No programming required!</u>

- The ability to rapidly integrate multiple, disparate data services, available on the net
- The ability to integrate over 200 required compute services, including grid service infrastructure for compute intensive tasks
- Enable the knowledge and insights gained to be rapidly and automatically deployed as new web services and portals
- Minimise the investment required in tools and services maximising the reuse of existing resources

One integration platform from Discovery to Clinic, and bench to boardroom

