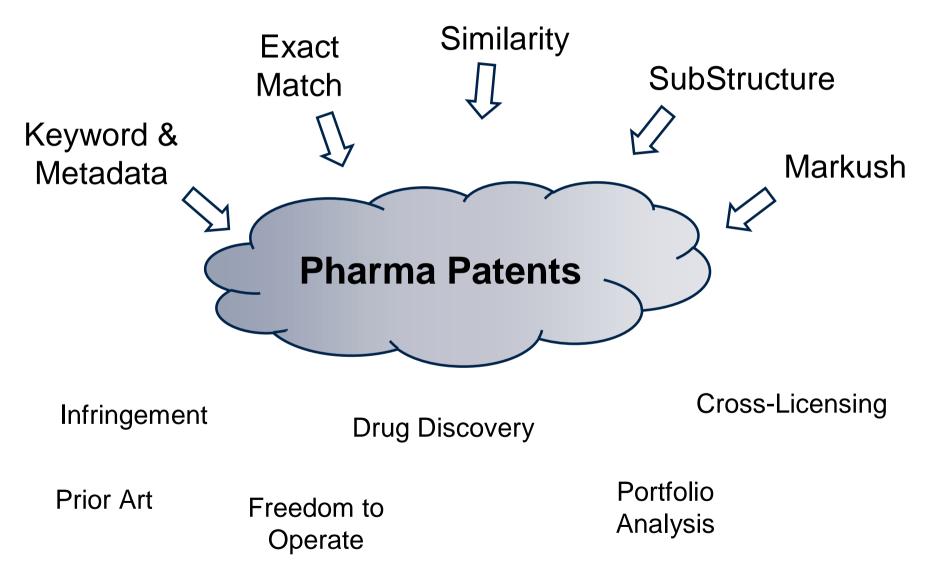
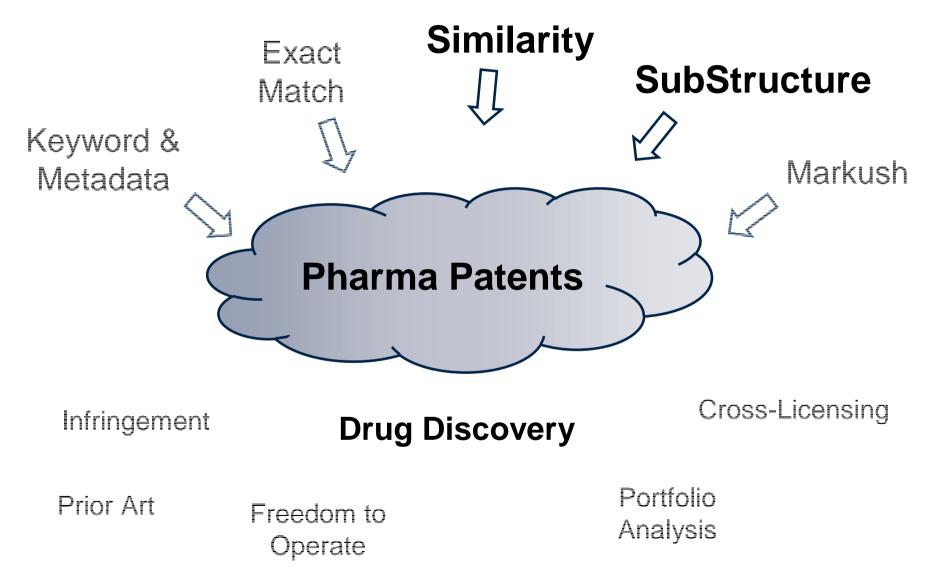


Characterizing Pharmaceutical Patents Using a Combined Text and Chemical Analysis Approach

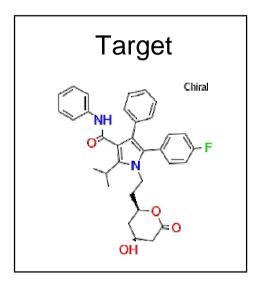
Brian Bartell (Notiora Inc)
Robert Brown, Eddy Vande Water,
Andrew LeBeau (Accelrys, Inc)


Overview

- Structure-Based Patent Search
 - "Best match" addresses varied problems in drug development
- Q: Can we match a target to a patent as a whole?
 - and is it interesting?
- A: Aggregate Asymmetric Search
 - Fast, Novel, Interesting
- UI for Fast Patent Qualification
- Examples

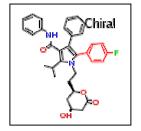

Patent Search

Patent Search


Structure Search

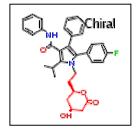
- Why find patents with related structures?
 - Similar Property Principal
 - "structurally similar molecules are expected to exhibit similar properties or biological activities"
 - Mark Johnson and Gerry Maggiora (Eds.) Concepts and Applications of Molecular Similarity. Wiley, New York, 1990
 - Lead Generation
 - Find structures that are likely to bind
 - Lead Optimization
 - Refine structures to make them bind better

Structure Search

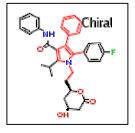


Match?

Search is "Best Match"



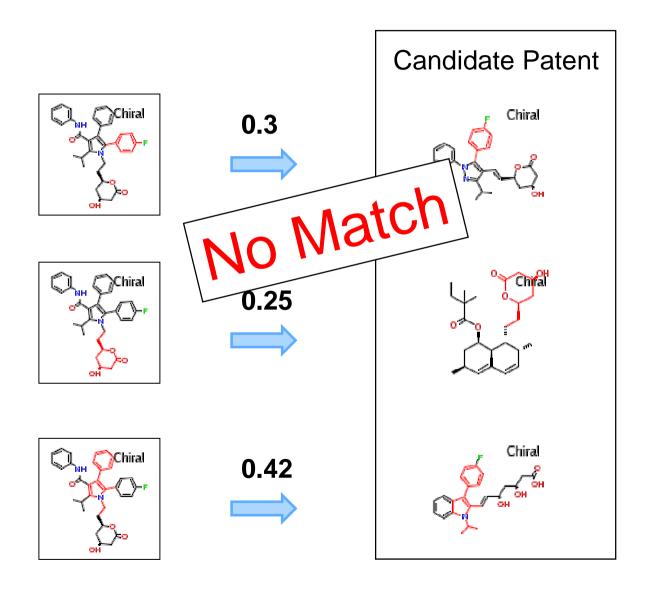
Match?


0.3

0.25



0.42



Candidate Patent

Search is "Best Match"

What's Missing?

Patent is a useful locus

 Structures therein will be related by a use or research program

Hypothesis

 Patents having structures that overlap different fragments of the target may be interesting.

Novelty

Traditional Structure Search doesn't find these patents

Aggregate Asymmetric Search

- Goal: Find patents where...
 - No single structure is similar/substructure to target
 - Parts from multiple structures cover the target
- This identifies patents with fragments in target

Aggregate Asymmetric Search

- Goal: Find patents where...
 - No single structure is similar/substructure to target
 - Parts from multiple structures cover the target
- This identifies patents with fragments in target

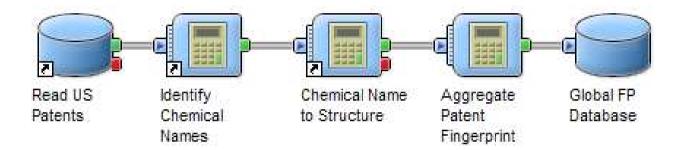
- Challenge:
 - Combinatorics

Aggregate Asymmetric Search

- Goal: Find patents where...
 - No single structure is similar/substructure to target
 - Parts from multiple structures cover the target
- This identifies patents with fragments in target

• Challenge:

Combinatorics

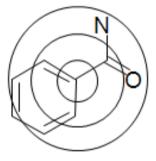

• Solution:

- Patent-wide Fingerprints (fast screen)
- Pairwise Maximal Common SubStructure (MCSS)

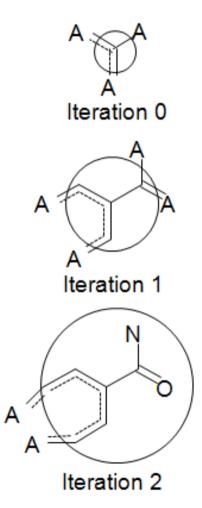

Processing Overview

One Time Pre-Process

Per Target

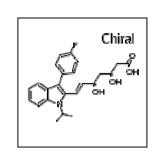


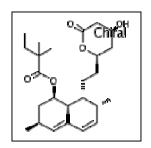
Extended Connectivity FPs

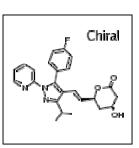


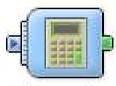
- Record (bond-type,atom-type) codes for each neighbor
- Sort to avoid order dependency
- Apply hashing function to map to a single number in the 2³² address space (~4 billion bits)
- Chance of collisions is extremely low

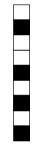
Each iteration adds bits that represent larger and larger structures

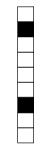


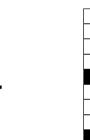

Aggregate Patent Fingerprint

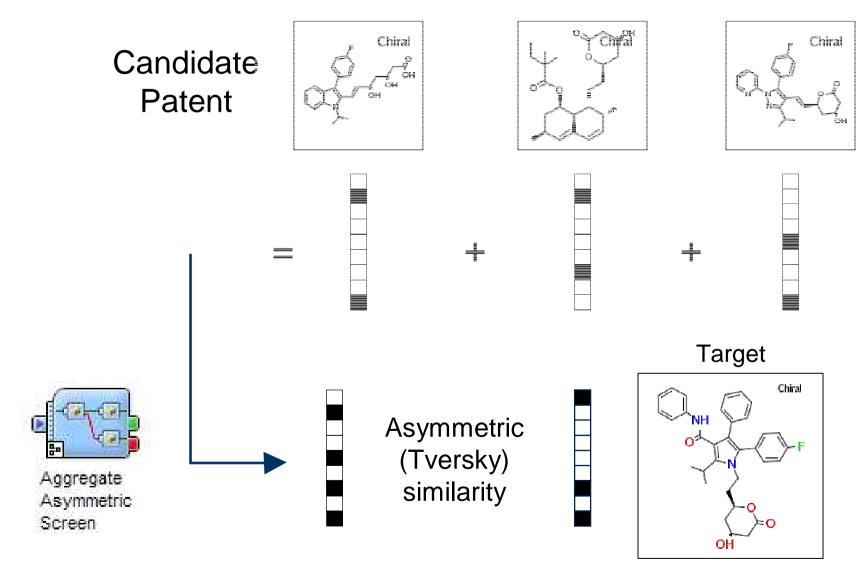






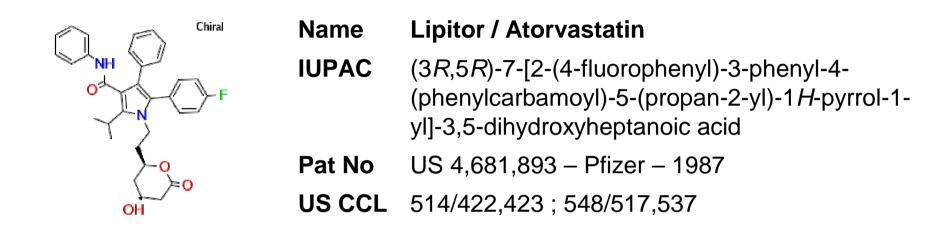






Aggregate Asymmetric Screen

Target Coverage via MCSS

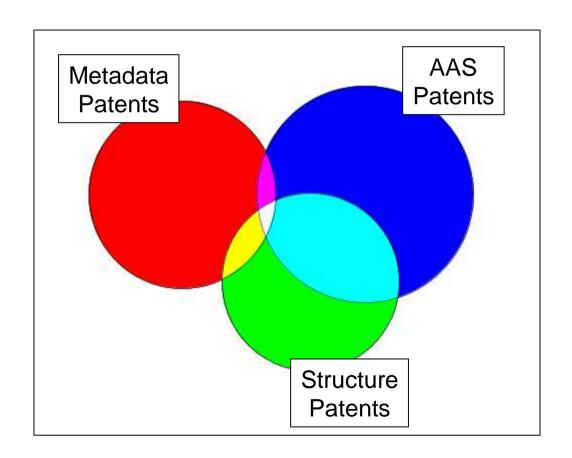


MCSS with Target

- Pairwise MCSS for each candidate Patent
 - Calculate all common substructures with target
 - Choose largest fragments that together cover the target
- Isolates structures and fragments that cover target

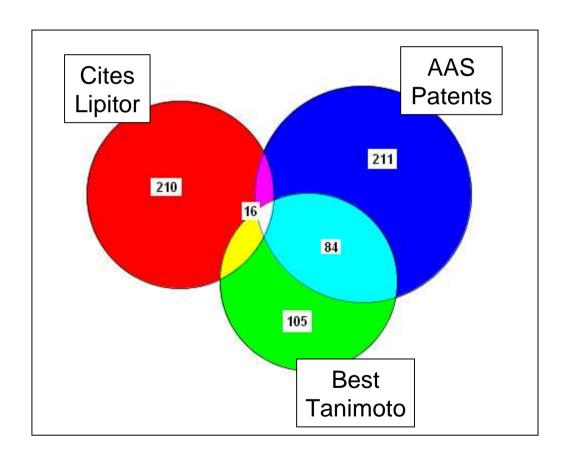
Example - Lipitor

Compare with ~ 30,000 US patents


- Selected from large pharma via AN/
- Pre- and post-dating lipitor
- From variety of patent categories

Novel?

Does AAS find patents you would otherwise not find?


- How do the AAS patents compare to:
 - Structure search
 - Keyword search
 - Citation walking
 - Patent class

AAS finds patents you would not otherwise find

- Finds novel patents relative to other searches
- Promotes some patents with low "Best" single structure similarity
- Finds patents with multiple fragments covering target

Relevance?

Top 3 AAS patents for Lipitor are:

Patent	Assignee	Date	Novel?	Title
6,306,891	Merck	2001	CCL	HIV integrase inhibitors
5,470,845	BMS	1995	Yes	Methods of using .alpha phosphonosulfonate squalene synthetase inhibitors including the treatment of atherosclerosis and hypercholesterolemia
7,030,112	BMS	2006	Yes	Pyrrolopyridazine compounds and methods of use thereof for the treatment of proliferative disorders

Relevance

Patent #2: hypercholesterolemia statin patent (BMS)

- Does not share citations, classification, named structures.
- Most similar single structure is 0.42 tversky
- Obviously relevant by disorder

Common Fragment	Lipitor w/Fragment	Patent Structures
	Chiral	Chiral OH OH
OH	Chiral	
NH	Chiral	P. NH °
F	Chiral	Chiral OH OH

Relevance

Patent #1: HIV integrase inhibitors (Merck)

- Does not share citations or named structures
- Same primary US CCL: 514/423

Common Fragment	Lipitor w/Fragment	Patent Structures
	Chiral Chiral	avi,
	Chiral	Dis
OH O	Chiral Chiral	F H H
	Chiral Chiral	Digo

Relevance

Patent #3: Proliferative disorders (BMS)

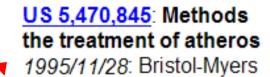
 Does not share citations, classification, named structures

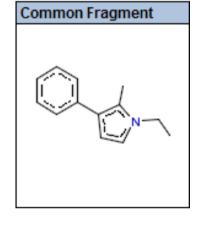
Common Fragment	Lipitor w/Fragment	Patent Structures
NH	Chiral	
NH O	Chiral	
NH	Chiral	Q.Q NH
0 0	Chiral	**************************************

UI for Assessing AAS Patents

- Displays each matching patent and the largest spanning fragments
- Scientist quickly qualifies patents for further investigation
- Applicable also to general structure search results

<u>US 5,470,845</u>: Methods of using .alpha.-phosphonosulfonate squalene synthetase inhibitors including the treatment of atherosclerosis and hypercholesterolemia


1995/11/28: Bristol-Myers Squibb Company (Princeton, NJ): Magnin, David R.; Biller, Scott A.; ... Sulsky, Richard B. ...alpha.-Phosphonosulfonate compounds are provided which inhibit the enzyme squalene synthetase and thereby inhibit cholesterol biosynthesis. These compounds have the formula ##STR1## wherein R^2 is OR^5 or R^5a; R^3 and R^5 are independently H, alkyl, arylalkyl, aryl or cyc... ...cloheteroalkyl, cycloheteroalkylalkyl; as further defined above; including pharmaceutically acceptable salts and or prodrug esters of the phosphonic (phosphinic) and/or sulfonic acids.


Common Fragment	Lipitor w/Fragment	Patent Structures containing Fragment
	Chiral	Chiral Structure Name: fluvastatin Structure in Context: • Claim #13:uctase inhibitor is pravastatin, lovastatin, simvastatin, velostatin, #STR#, rivastatin, compactin, SDZ-63,370 (San
OH	NH Chiral	Structure Name: simvastatin Structure in Context: • Claim #13:2 wherein the HMG CoA reductase inhibitor is pravastatin, lovastatin, #STR#, velostatin, fluvastatin, rivastatin, c
NH	Chiral NH Chiral	Structure Name: ethanol 2-[[1-methyl-2-[3-(trifluoromethyl) phenyl]ethyl]aminojbenzoate Structure in Context: • Claim #13:minosalicylic acid, probucol, hydroxypropylmethyl cellulose, LS-2904, #STR# (ester). 14. A method for inhibiting a
F	Chiral	Chiral Chiral Chiral

UI for Assessing AAS Patents

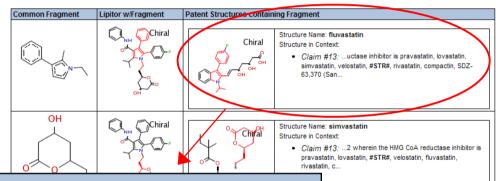
Lipitor w/Fragment

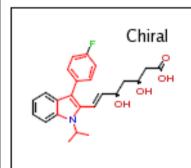
Chiral

US 5,470,845. Methods of using .alpha.-phosphonosulfonate squalene synthetase inhibitors including the treatment of atheroscierosis and hypercholesterolemia

1995/11/28: Bristol-Myer Squibb Company (Princeton, NJ): Magnin, David R.; Biller, Scott A.; ... Sulsky, Richard B. ... alpha.-Prospheroculforate compounds are provided which inhibit the enzyme squalene synthetase and thereby inhibit cholesterol biosynthesis. These compounds have the formula ##STR1## wherein R^2 is OR^5 or R^5a; R^3 and R^5 are independently H, alkyl, arylalkyl, aryl or cyc.....cloheteroalkyl, cycloheteroalkylalkyl; as further defined above; including pharmaceutically acceptable salts and or prodrug esters of the phosphonic (phosphinic) and/or sulfonic acids.

	Common Fragment	Lipitor w/Fragment	Patent Structures contain	ing Fragment
\		Chiral	Chiral OH OH	Structure Name: fluvastatin Structure in Context: • Claim #13:uctase inhibitor is pravastatin, lovastatin, simuastatin, velostatin, #STR#, rivastatin, compactin, SDZ-63,370 (San
/	O O	Chiral	Chrail	Structure Name: simvastatin Structure in Context: • Claim #13:2 wherein the HMG CoA reductase inhibitor is pravastatin, lovastatin, #STR#, velostatin, fluvastatin, rivastatin, c
	<u> </u>	Chiral	NH O	Structure Name: ethanol 2-[[1-methyl-2-[3-(trifluoromethyl) phenyl]ethyl]amino]benzoate Structure in Context: • Claim #13:minosalicylic acid, probucol, hydroxypropylmethyl cellulose, LS-2904, #STR# (ester). 14. A method for inhibiting a
	F	Chiral	Chiral	Chiral Chiral


UI for Assessing AAS Patents



<u>US 5,470,845</u>: Methods of using .alpha.-phosphonosulfonate squalene synthetase inhibitors including the treatment of atherosclerosis and hypercholesterolemia

1995/11/28: Bristol-Myers Squibb Company (Princeton, NJ): Magnin, David R.; Biller, Scott A.; ... Sulsky, Richard B. alpha.-Phosphonosulfonate compounds are provided which inhibit the enzyme squalene synthetase and thereby inhibit cholesterol biosynthesis. These compounds have the formula ##STR1## wherein R*2 is OR*5 or R*5a; R*3 and R*5 are independently H, alkyl, arylalkyl, aryl or cyc... ...cloheteroalkyl, cycloheteroalkylalkyl; as further defined above; including pharmaceutically acceptable salts and or prodrug esters of the phosphonic (phosphinic) and/or sulfonic acids.

Patent Structures containing Fragment

Structure Name: fluvastatin

Structure in Context:

 Claim #13: ...uctase inhibitor is pravastatin, lovastatin, simvastatin, velostatin, #STR#, rivastatin, compactin, SDZ-63,370 (San... e: ethanol 2-[[1-methyl-2-[3-(trifluoromethyl) |amino]benzoate

intext:

#13: ...minosalicylic acid, probucol, ypropylmethyl cellulose, LS-2904, #STR# (ester). 14. A

27

for inhibiting a...

Summary

- Q: Can we match a target to a patent as a whole?
 - and is it interesting? Is it novel?
- A: Yes, yes, and yes
 - Aggregate Asymmetric Search
 - Compliments typical structure-based search
 - Finds patents with only multiple fragments covering target
- UI for Assessing AAS Patents
- Future Work
 - Literature, Corporate Documents

brian@notiora.com